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Abstract-A numerical study of natural convection through vertical annuli with one wall uniformly heated 
and the other wall adiabatic was made. In this study the boundary layer simplifications of the Navier- 
Stokes equations for developing laminar flow with constant properties were solved by means of a finite- 
difference method. Three radius ratios (0.26,O.j and 0.9) were investigated, The different variables (velocity, 
pressure defect, temperature, etc.) were dcte~in~. An apparatus was built to check the obtained numerical 
results for one of the conditions employed. Agreement between the theoretical and experimental values 

was good. 

INTRODUCTION 

CONSIDERABLE interest has been shown in recent years 
in the problem of natural convection heat transfer to 
fluids in heated, vertical, open-ended annuli. Such 
systems are of practical importance in the field of 
double pipe arrangements particularly the fuel 
elements of nuclear reactors during shut-off periods. 
They may also be useful in solar heating and ven- 
tilating applications for domestic purposes. 

To the authors’ knowledge, the only study available 
at present for natural convection heat transfer in ver- 
tical annuli is that of El-Shaarawi and Sarhan [l]. 
They presented numerical results for the problem of 
laminar, natural convection heat transfer in an open- 
ended vertical concentric annulus of radius ratio 0.5 
with one wall isothermal and the other wall adiabatic. 
Apart from this work the data available in the litera- 
ture on heat transfer in annuli are for either forced 
flow or mixed convection [3]. On the other hand, 
natural convection heat transfer in tubes and parallel 
plate channels, which are the two limits of the annular 
geometry, have received most attention [48]. 

The lack of information on natural convection heat 
transfer in vertical annuli with constant wall heat flux 
motivated the present work. This paper presents 
n~e~cal and ex~~mental results for natural con- 
vection heat transfer in vertical annuli with one wall 
heated at constant heat flux while the other wall is 
adiabatic. In the numerical analysis, the governing 
boundary layer equations have been solved with 
Prandtl number = 0.7 for annuli of radius ratios 0.26, 
0.5, and 0.9 under two thermal boundary conditions; 
namely, case (I) in which the inner wall of the annulus 
is uniformly heated while the outer wall is adiabatic 
and case (0) in which the outer wall is uniformly 
heated while the inner wall is adiabatic. In the exper- 

iments, measurements were made using a specially 
constructed apparatus with an annulus of radius ratio 
equal to 0.26 under thermal boundary condition (0). 
A comparison between the theoretical results and the 
experimental measurements for this radius ratio is 
presented. 

THEORETICAL ANALYSIS AND 

METHOD OF SOLUTION 

The geometry of the problem under consideration 
and the coordinate system used are illustrated in Fig. 
1. Either the inner or outer wall of the annulus is 
unifo~ly heated while the other wall is perfectly insu- 
lated. The heat added to one of the annulus bound- 
aries produces an upward natural convection flow in 
the annular gap between the two cylindrical walls. It 
is assumed that the fluid enters the bottom of the 
annulus with a flat velocity profile at a value equal to 
the mean axial velocity in the annular gap (uO) and 
with a uniform temperature profile at a value equal 
to the ambient temperature (to). The fluid is assumed 
to have constant physical properties but obeys the 
Boussinesq approximation, according to which its 
density is constant except in the buoyancy term of 
the vertical momentum equation. The flow is steady, 
axis~metric and without internal heat generation. 
Viscous dissipation and axial diffusion of heat are 
neglected. Further, applying the Prandtl boundary 
layer assumptions, the radial momentum equation 
can be dropped, the axial diffusion of momentum can 
be neglected, and the equations governing the natural 
conv~tion laminar fluid motion and heat transfer in 
the gap of the vertical concentric annulus are 

(1) 
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NOMENCLATURE 

a local heat transfer coefficient based on r2 outer radius of annulus 
area of heated surface, q/(tw - t,) R dimensionless radial coordinate, r/r2 

a average heat transfer coefficient over the Ra Rayleigh number, Gr Pr 

annulus height based on average Ra* modified Rayleigh number, Gr* Pr 

temperature of heated wall, t fluid temperature at any point 
@rD,Z(T, - to) &I? mixing cup temperature over any cross- 

b annular gap width, (r2 - r ,) section, Jr; utr dr/ Jr; ur dr 

CP specific heat of fluid at constant pressure L mixing cup temperature over the exit 
D equivalent (hydraulic) diameter of cross-section, i.e. value of t, at z = 1 

annulus, 2b to fluid temperature at annulus entrance 

7 

diameter of heated wall L temperature of heated wall at any 
volumetric flow rate, particular elevation 
j;:2rcrudr = n(r:-r:)uo :w average temperature of heated wall, 

F dimensionless volumetric flow rate, (l/r)S’,t,dz 
f /aI Gr*v T dimensionless temperature at any point, 

& 

gravitational body force per unit mass (t- to)l(qD/2k) 
Grashof number, g/qD “/2v2k T, dimensionless mixing cup temperature 

Gr* modified Grashof number, Gr D/l over any cross-section, 
h heat absorbed by fluid from entrance up (t, - t,)/(qD/2k) = j; UTR dR/ l,$ UR dR 

to a particular elevation in the annulus, TW dimensionless temperature of heated wall 

Pof&n - to) at any particular elevation, 
/; heat absorbed by fluid from entrance up (t, - to)l(@/2k) 

to the annulus exit. i.e. value of h at TW dimensionless average temperature of 
z = 1, pocpf(fm- to) = nD,lq heated wall, 

H dimensionless heat absorbed from (r, - to)l(qD/2k) = (l/L) Ji Tw dZ 
entrance up to a particular elevation, U axial velocity component at any point 
2hk/np,c,v Gr* qDI uo entrance axial velocity, SF; 2ur dr/(r: -I$) 

A dimensionless heat absorbed from u dimensionless axial velocity component, 
entrance up to annulus exit, i.e. value ur: /Iv Gr* 

of H at z = I, 2hk/np,c,v Gr* qDI UO dimensionless axial velocity at annulus 

k thermal conductivity of fluid entrance, u,r:llv Gr* 

1 height of annulus V radial velocity component at any point 

L dimensionless annulus height, l/Gr* V dimensionless radial velocity component, 

N annulus radius ratio, r, /r, Vr2lv 

Nu local Nusselt number, aD/k = 2/(T,,, - T,,,) z axial coordinate 

Nu average Nusselt number, LZDjk = 2/Fw Z dimensionless axial coordinate z/l Gr*. 

P pressure of fluid at any cross-section 

P’ pressure defect at any cross-section, p -ps 

PO pressure of fluid at annulus entrance Greek symbols 

PS hydrostatic pressure at any particular 

; 

thermal diffusivity of fluid, k/p,c, 

elevation, -pogz volumetric coefficient of thermal 

P dimensionless pressure defect, expansion 
p’rz/po12v2 Gr*2 P dynamic fluid viscosity 

Pr Prandtl number, pcJk V kinematic fluid viscosity, p/p0 

4 heat flux at heated wall, T k(&/&) Iw P fluid density at temperature t, 
where the minus and plus signs are for POD -B(t- toI1 
cases (I) and (0), respectively PO fluid density at inlet fluid temperature 

r radial coordinate 4 dimensionless radial coordinate, 

rl inner radius of annulus (r-rlY(r2-rI). 

po[Vg+ug]= -$-pg+ Fi(rg) 

at at CI a at 
vg+uz=;g rs. 

( > 

(2) 

(3) 

Introducing the coefficient of thermal expansion (/I) 
and the pressure defect (j’) equation (2) can be written 
as 

Vg+uE= -L*+gP(t-fo)+~~ rg 
p. aZ (1 

. (4) 
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buhr wall) 

FIG. 1. Mesh network. 

Equations (1), (3) and (4) are subject to the fol- 
lowing boundary conditions : 

for z = 0 and r, -C r < r2, v = 0, u = u,,, 

2 

t=t,andp’=p,,= -y 

forz>Oandr=r,,u=u=Oand~= _i 

I 

for case (I) or E = 0 for case (0) 
1 

(5) 

forz>Oandr=r,,v=u=OandE=O 

I 

for case (I) or E = f for case (0) 

for z = 1,~’ = 0. J 

Introducing the dimensionless parameters given in 
the Nomenclature, equations (l), (3) and (4) and 
boundary conditions (5) can be replaced by the fol- 
lowing dimensionless forms : 

av v au z+jj+az=o (6) 

au au ap T a=u 1 au 
%i+%= -E+16(l-N)4+aR2+Rz 

forZ=OandN< R< 1, V=O,U= U,,, 
‘\ 

; T=OandP=P,=-p 

I 

forZ>OandR=N,V=U=Oandg 

I 

= gN for case (I) or g = 0 for case (0) 

) 
(9) 

forZ>OandR=l,V=U=Oand~=O 
I 

for case (I) or aT = aR GN for case (0) 

I 
for Z = L, P = 0. I 

The above set of coupled dimensionless equations 
(6~(8) subject to boundary conditions (9), have been 
solved by means of the linearized numerical scheme 
of Bodoia and Osterle [4] after replacing the deriva- 
tives in these equations by the appropriate finite- 
difference approximations given in ref. [9]. In this 
numerical technique, the mathematical need for 
another equation due to elimination of the radial 
momentum equation (as a result of the boundary layer 
simplifications) could be compensated, as explained 
by Coney and El-Shaarawi [2], by using the following 
dimensionless integral continuity equation : 

s 

I 
F= (1-N2)U0 = 2 RUdR. (10) 

N 

(7) It should be noted that in the present case of con- 
stant heat flux conditions there is no upper limiting 
value of F as in the case of constant wall temperature 
which was treated in ref. [l]. This is because under the 
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constant heat flux condition the buoyancy driving 
force is sustained. The computations were carried out 
at various values of the dimensionless flow rate (Ff 
ranging from IO-’ to 0.5 for each of the previously 
mentioned three radii ratios. For each value of F in an 
annulus of a given radius ratio (N), the computation 
starts at the bottom of the annulus and continues 
upward until the dimensionless pressure defect (P) 
ceases to be negative. The dimensionless axial distance 
(2) from the annulus entrance until the cross-section 
at which P = 0 establishes the unknown dimen- 
sionless length (L) and hence the unknown modified 
Grashof number (Gr*) for this particular value of F. 
Also, the computations give the dimensionless wall 
temperature T, from which the average wall tem- 
perature 7% and hence the average Nusselt number 
% is evaluated. 

The heat absorbed by the fluid from the entrance 
up to a particular elevation in the annulus is given by 

h = e,P*f(&Il-~o) = 27W&J 

)? 
X 

s 
-ru(t-Qdr = nD,zq (11) 

rl 

which can be written in the following dimensionless 

-c 

0 

M 

form : 

2 h 2D, ff=--=-_ 
PrGr* rcDlq Pr D 

Z = 2 
s 

’ RLiTdR. 
N 

(12) 

Hence 

(13) 

Using equation (1 l), the following relation could be 
derived for the dimensionless mixing cup temperature 

2 D,Z 
Tm=gDF (14) 

Equations (12) and (14) show that, for a given flow 
rate F of a specific fluid in a given annulus, the heat 
absorbed by the Auid (H) and the mixing cup tem- 
perature (T,,,) vary linearly with Z. 

APPARATUS 

The experimental apparatus is shown diagram- 
matically in Fig. 2. It consists essentially of two 

F 

E 

G 

D 
D 

FIG. 2. Diagrammatic arrangement of the apparatus : (a) section in asbestos layers ; (b) method of adjusting 
annulus concentrically. A, inner brass tube; B, outer copper tube; C, wooden frame; D, main heater; E, 
asbestos layers; F, guard heater; G, guard heater therm~oup~es; H, thermocouples; I, brass plugs; J, 

wooden guide; K, steel wires ; L, measuring stations ; M, wooden beam. 



Natural convection in uniformly heated vertical annuli 1385 

vertical concentric tubes forming a vertical annulus. 
The inner tube (A) is made of brass and has a 12.2 
mm o.d., 10.1 mm id. and is 1670 mm long. The outer 
tube (B) is made of copper and has a 47 mm id., 51 
mm o.d. and is also 1670 mm long. The annular radius 
ratio is 0.26, which is equal to one of the radius ratios 
investigated in the theoretical study. The whole appar- 
atus is carried by means of a wooden frame (C). 

The outer wall of the outer tube is covered with a 
layer of glass electric insulating tape on which a main 
heater (D) of nickel-chrome wire is uniformly wound 
in order to give a constant heat flux. The main heater 
is covered with asbestos layers (E) of thickness 55 
mm, on which another nickelchrome is uniformly 
wound to form a ‘guard heater’ (F) as shown in Fig. 
2 (A). The guard heater is covered with a 15 mm thick 
asbestos layer. Four pairs of thermocouples (G) are 
installed at heights of 250, 550, 1050 and 1350 mm 
from the annulus entrance. The thermocouples of 
each pair are fitted on the same radius separated by a 
layer of asbestos. The heat generated by the guard 
heater can be adjusted, by means of a variable resis- 
tance, until the thermocouples of each pair read the 
same temperature. All the heat generated by the main 
heater then flows inwards to the annulus. 

To measure the wall temperature of the outer tube 
44 ironconstantan thermocouples (H) are silver- 
soldered along its outside surface. Counted from the 
annulus entrance the first ten thermocouples are 
located every 20 mm, the next 26 every 50 mm and 
the last eight every 20 mm. To make sure that heating 
is uniform circumferentially, eight thermocouples are 
fitted opposite to the main thermocouples at heights 
of 100, 300, 500, 700, 900, 1100, 1300 and 1500 mm 
from the annulus entrance. The thermocouples read- 
ings showed that heating was in all cases uniform 
along the circumference. 

To obtain an adiabatic inner tube wall surface (i.e. 
boundary condition ‘0’) the inner tube is filled with 
asbestos powder and the tube ends are closed by brass 
plugs (I). In order to set the tubes exactly concentric, 
two wooden guide pieces (J) were used (Fig. 2 (B)). 
Two steel wires (K) attached to the two end brass 
plugs fixed the inner tube to the wooden frame (C) 
carrying the apparatus. 

Five measuring stations (L) are arranged on the 
outer tube at axial distances 200, 500, 800, 1100 and 
1400 mm from the annulus entrance to enable 
measurement of the axial velocity and temperature 
profiles in the annular gap. Each station consists of a 
horizontal copper tube of 10 mm i.d. silver-soldered 
to the annular outer tube wall. When using one of the 
stations the four other stations are plugged. Screwed 
to the outer end of this tube is a travelling mechanism 
which carries either a Disa low-velocity hot-wire 
anemometer or a porcelain tube in which a travelling 
thermocouple is fitted. The thermocouple is shielded 
to minimize radiation. Calculation based on the outer 
tubes showed that radiation from the outer tube wall 
to the inner tube wall did not exceed 2.5% of the 

whole flux employed and radiation was, therefore, 
neglected. 

The Disa low-velocity hot-wire anemometer was 
calibrated in the way recommended by the maker [lo]. 
All the thermocouples used were calibrated against 
the melting point of ice made from distilled water and 
boiling points of several substances. A wooden beam 
(M) carried all the thermocouple wires on their way 
from the apparatus to a potentiometer capable of 
reading 0.0005 mV. 

The required electric power was taken from the a.c. 
mains via a stabilizer. The main heater input was 
measured by a wattmeter accurate to f0.5%. 

The apparatus was placed in a large room and a 
wooden shield, which extends well beyond the ends of 
the annulus, ensured no interference of outside air 
currents. All the readings were taken in the steady- 
state condition. 

The experiments were carried out with heat flux 
values which ranged from 62 to 803 W giving modified 
Rayleigh number (Ra*), volumetric air flow rate 
and maximum wall temperature in the range 2.27 x 
104-2.92x 105, 1400-2880 cm3 s-’ and 10~600”C, 
respectively. 

RESULTS AND DISCUSSION 

For a complete set of results ref. [lo] may be con- 
sulted. Only samples of these results are shown here- 
inafter. 

Air oelocity 
Figures 3(a) and (b) show the theoretical profiles 

for the air velocity axial component corresponding to 
the two boundary conditions (0) and (I) in an annulus 
of N = 0.26 at the five heights corresponding to the 
five measuring stations of the experimental apparatus 
for values of F = 1 x 10m4 (low flux) and 5 x 10m5 
(high flux). 

It can be seen that the air velocity axial component 
profile is flat at the annulus entrance. As air flows up 
a boundary layer is formed at both annulus walls 
causing an unsymmetrical axial velocity profile with 
the peak shifted towards the heated wall. In view of 
continuity the value of the axial velocity on the outer 
side of the curve must correspondingly decrease until, 
as can be seen from Fig. 3(a), flow reversal occurs. 

On the same figures the experimental points for 
boundary condition (0) are plotted. As can be seen 
the agreement with the theoretical curve is within 
&ll%. 

The theoretical air velocity radial component for a 
high and a low value of F is shown in Figs. 4(a) and 
(b), respectively. In the small flux condition the radial 
velocity is from both walls to the core whereas in 
the high flux condition the radial velocity is wholly 
towards the heated wall. 
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FIG. 3(a). Variation of axial velocity component: N = 0.26, 
F=lx10-4,q=593W. 

Air temperature 
Figure 5 shows the theoretically obtained variation 

of air temperature radially for the two boundary con- 
ditions (0) and (I) in an annulus of N = 0.26 at the 
five heights Z corresponding to the five experimental 
measuring stations for a value of F = 1 x 10-4. It will 
be seen that the maximum temperature occurs at the 

heated wall and that the thickness of the boundary 
layer increases as the air moves up. 

On the same figure the experimental points are plot- 
ted for boundary condition (0). Agreement with the 
theoretical curve is within f 13%. 

WaN and mixing cup temperature 
The dimensionless temperature of the heated wall 

T, and the dimensionless mixing cup temperature T,,, 
are plotted in Fig. 6 against the dimensionless axial 
distance from the annulus entrance Z for the two 
boundary conditions (0) and (I) for an annulus of 
N = 0.26 and a value of F = 1 x 10m4. 
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FIG. 3(b). Variation of axial velocity component : N = 0.26, 
F=5x10-4,q=62W. 

The dimensionless mixing cup temperature is repre- 
sented by a straight line (the flux along the annulus 
being constant). The dimensionless wall temperature 
curve, which shows a value of T, = 0 at 2 = 0 fol- 
lowed by a gradually rising value of T, - T,,,, indicates 

a developing region. At a value of Z = - 1.75 x 10m6 
the fully developed condition appears to have been 
attained. 

Plotted on the same figure are the experimental 
points for boundary condition (0) which agree with 
the theoretical curves within f9% for T, and within 
f6% for T,. 

Local Nusselt number Nu 
The values of the theoretical and the experimental 

local Nusselt number are also plotted in Fig. 6. The 
agreement is within f 10%. 



Natural convection in uniformly heated vertical annuli 

“I 0 

1387 

Jo 
‘? N 

7 9 0 9 0 IlDM JWU! 0 z 
0 6 0 0 d 0 0 d d 

h 
vi 

i , 



1388 M. AL-ARABI, M. A. 1. EL-SHAARAWI and M. KHAMIS 

24 27 30 33 36 

FIG. 

ZxlO’ 

6. Variation of Nu, T, and Z’,, with Z: Pr = 0.7, N = 0.26, F = 1 x 10e4 and q = 593 
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FIG. 7. Variation of pressure defect and heat absorbed with annulus length: Pr = 0.7, N = 0.26. 
F= 1 x lo-‘. 
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FIG. 8. Variation of dimensionless volumetric flow rate with the ~mensi~nless annulus height : Pr = 0.7, 
N = 0.26. 
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Pressure defect REFERENCES 

Figure 7 shows the variation of the dimensionless 
pressure defect P with the dimensionless axial distance 

Z for an annulus of N = 0.26 and a value of 
F= 1 x 10-t. It is to be noted that, in accordance 
with the definition given for the dimensionless annulus 
height L, the point of intersection of the P-Z curve 
with the Z-axis defines L. 
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CONVECTION NATURELLE DANS UN ESPACE ANNULAIRE VERTICAL 
UNIFORMEMENT CHAUFFE 

R&m&On Btudie numeriquement la convection naturelle dans un espace annulaire avec une paroi 
uniformement chauffee et l’autre adiabatique. Les simplications de la couche limite laminaire pour les 
equations de Navier-Stokes avec des proprietes constantes sont trait&es par une mtthode de differences 
finies. Trois rapports des rayons (0,26,0,5 et 0,9) sont consider&. Les differentes variables (vitesse, pression, 
temperature, etc.) sont determinees. Un montage est rtalise pour verifier les resultats numeriques obtenus 

pour une des conditions considertes. L’accord est bon entre les valeurs theoriques et experimentales. 

NATURLICHE KONVEKTION IN EINHEITLICH BEHEIZTEN SENKRECHTEN 
RINGRAUMEN 

Znsammenfaasung-Es wurde eine numerische Untersuchung der natiirlichen Konvektion in senkrechten 
Ringrlumen, deren eine Wand adiabat ist und deren andere Wand einheitlich beheizt wird, durchgefiihrt. 
Mit Hilfe des Differenzenverfahrens wurden die Grenzschichtniiherungen der Navier-Stokes-Gleichungen 
fur die laminare Anlaufstriimung mit konstanten Stoffwerten gelost. Drei Radienverhaltnisse (0,26 ; 0,5 
und 0,9) wurden untersucht. Verschiedene GrijBen (Geschwindigkeit, Druckverlust, Temperatur, etc.) 
wurden bestimmt. Urn die numerischen Ergebnisse zu iiberpriifen, wurde eine der Anordnungen als 
Versuchseinrichtung realisiert. Die Ubereinstimmung zwischen theoretischen und gemessenen Werten war 

gut. 

ECTECTBEHHAR KOHBEKHHR B PABHOMEPHO HAI-PEBAEMbIX BEPTHKAJIbHbIX 
KOJIbHEBbIX KAHAJIAX 

zilWOTSUlR8+~&SCJteHHO ti3)“iiETClI eCIf$TBeHHaR KOHBeKUHK B BepTHKKJlbHOM KOJIbUeBOM KaHaJIe, OnHa 
CTeHKa KOTOpOrO PaBHOMepHO Hal-pCBKeTCK, a ~p~ilK-KWa6aTHWCKaK. B npn6nancetimi lIOrpaH&iY- 
HOrO CJIOK YpaBHeHHK HaBbeCTOKCa lWIIaJIHCb KOHVfHO-pa3HOCTHbtM MCTOnOM QnK pa3BHBaIO~mJCK 
JlaMHHapHOrO TeYeHHK )I(WKOCTH C IIOCTOKHHbIMH CBOkTBKMH. &‘iCCJXe~OBZliTHCb TpS OTHOUICHHX PaAUy- 

COB 0,26, 0,5 H 0,9. PiiCC’iIiTbIBaJlEiCb ll0J1n CKOpOCT&, .&WUIeHliii, TeMlICpaTyP. CO3naHa YCTaHOBKa rum 
IIpOBepKbl llOJly=iCHHblX qHCJleHHbIX Pe3yJIbTaTOB JlJUl OBHOrO H3 3a&+HHbIX rPaHHWMX ,U,OBUii. nOny- 

WHO XOpOluee COrnaCHe MCW,,’ TeO~H’ieCKHMH H 3KCIICpHMeHTtUbHbIMB p3y,IbTaTaMH. 


